

Prüfung Grundlagen der Elektrotechnik 1

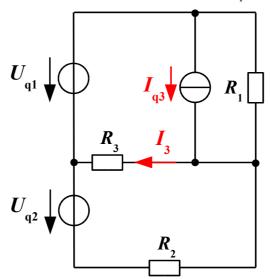
Studiengänge Mechatronik / Regenerative Energietechnik & Energieeffizienz

Prüfung		Prüfungsteilnehmer						
Semester:	WiSe15/16	Name:						
Prüfungstermin:	23.01.2016	Vorname:						
Arbeitszeit:	120min	Matrikelnummer:						
Aufgabensteller:	Brm, Chm, Hoa, Unh	Studiengang: O ME O RE		REE				
		Studiengruppe:	O a	O Ł)	O w		

Bewertung	Gesamtpunkte:		Note:		
A1	A2	A3	A4		A5
Erstkorrektor:		Datum:		Unterschrift:	
Zweitkorrektor:		Datum:		Unterschrift:	

Zugelassene Hilfsmittel:

- selbstgeschriebene Formelsammlung
- Fakultätstaschenrechner Casio FX-991

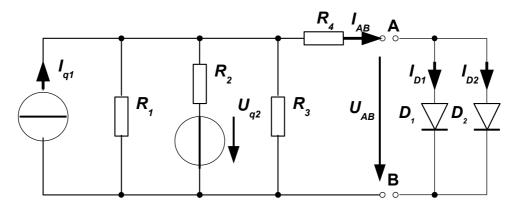

Allgemeine Hinweise:

- Bitte überprüfen Sie, ob Ihre Angabe alle Blätter und Aufgaben umfasst.
- Die Angabenblätter dürfen nicht getrennt werden und sind als Bestandteil der Prüfung mit abzugeben.
- Rechenwege sind vollständig und nachvollziehbar zu dokumentieren.
- Kennzeichnen Sie eindeutig, zu welcher Teilaufgabe eine Lösung gehört.
- Falls Rechnungen auf einer anderen Seite fortgesetzt werden, ist dies deutlich zu kennzeichnen.
- Benutzen Sie keinen Rot-, Orange- oder Bleistift.
- Alle Punkteangaben sind Richtwerte.

Aufgabe 1 (ca. 14 Punkte)

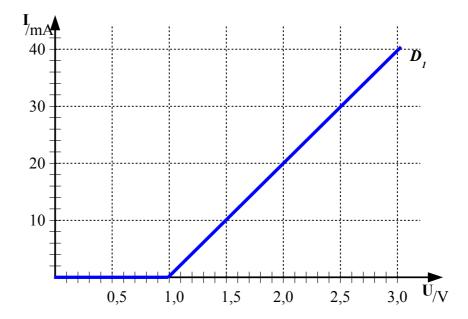
Gegeben ist folgendes Netzwerk.

Bekannt sind: $U_{q1} = 20V$, $U_{q2} = 75V$, $R_1 = 4\Omega$, $R_2 = 2\Omega$, $R_3 = 6\Omega$, $I_{q3} = 10A$.



- a) Wandeln Sie zuerst die lineare Stromquelle (I_{q3} , R_1) in eine lineare Spannungsquelle um und zeichnen Sie die neue sich ergebende Schaltung.
- b) Berechnen Sie den Zweigstrom I_3 mit dem Maschenstromverfahren. Die Maschenströme müssen so gewählt werden, dass der Zweigstrom I_3 selbst <u>ein</u> Maschenstrom wird. Stellen Sie die Maschengleichungen in der Matrix-Form dar.
- c) Welche Leistung wird in der idealen Quelle $U_{\rm q2}$ umgesetzt? Arbeitet diese Quelle als Erzeuger oder Verbraucher? Begründen Sie Ihre Aussage.
- d) Die ideale Spannungsquelle U_{q2} soll nun durch eine ideale Stromquelle I_{q2} ersetzt werden, damit $I_3 = 0$ A wird. Geben Sie den Wert und die Polarität der idealen Quelle I_{q2} in der Zeichnung an.

Brm / Chm / Hoa / Unh Seite 2 von 5


Aufgabe 2 (ca. 13 Punkte)

Gegeben ist die folgende Schaltung mit den Werten: $I_{q1} = 80 \text{mA}$, $U_{q2} = 2 \text{V}$, $R_1 = 60 \Omega$, $R_2 = 50 \Omega$, $R_3 = 300 \Omega$, $R_4 = 50 \Omega$.

- a) Berechnen Sie die Leerlaufspannung und den Kurzschlussstrom des aktiven Zweipols. Wandeln Sie dazu die Spannungsquelle $U_{\rm q2}$ geeignet um.
- b) Für die Diode D_1 ist die Kennlinie im unten stehenden Diagramm angegeben. Die Diode D_2 hat im Durchlassbereich einen halb so großen differenziellen Widerstand bei ansonsten identischer Kennlinie.

Konstruieren Sie die Kennlinie der Diode D_2 im unten stehenden Diagramm.

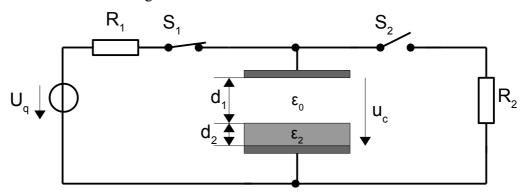
- c) Nun werden die beiden Dioden an den aktiven Zweipol angeschlossen. Ermitteln Sie für diesen Fall den von der Diodenschaltung aufgenommenen Strom I_{AB} sowie die Spannung U_{AB} .
- d) Bestimmen Sie die Ströme I_{D1} sowie I_{D2} .
- e) Berechnen Sie die Leistungen, welche die idealen Quellen I_{q1} und U_{q2} aufbringen.

Brm / Chm / Hoa / Unh Seite 3 von 5

Aufgabe 3 (ca. 12 Punkte)

Gegeben sei ein Plattenkondensator, dessen eine Elektrode mit einem Dielektrikum der Dicke d_2 beschichtet ist. Die andere Elektrode ist beweglich, so dass ein variabler Luftspalt der Dicke d_1 entsteht. Der Kondensator ist wie dargestellt beschaltet.

Folgende Werte sind gegeben:


$$U_{q} = 50 \text{V}, \boldsymbol{R}_{1} = 8 \text{k}\Omega, \boldsymbol{R}_{2} = 2 \text{k}\Omega$$

Plattenfläche: $A = 100 \text{cm}^2$

$$\varepsilon_{r2} = 2$$

$$d_2 = 10 \mu m$$

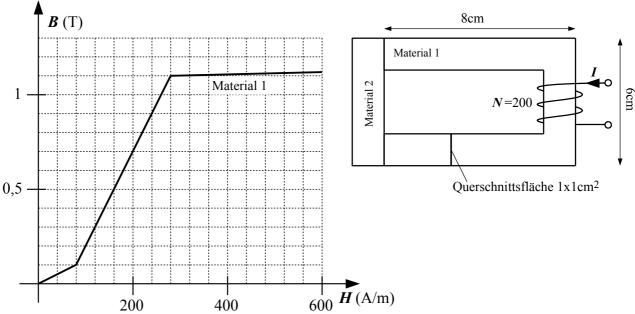
Randeffekte können vernachlässigt werden.

a) Geben Sie ein Ersatzschaltbild des Plattenkondensators an, berechnen Sie zahlenmäßig die dazu gehörigen Bauelementewerte, sowie die Gesamtkapazität der Anordnung für einen Wert $d_1 = 1$ mm.

Für die Gesamtkapazität der Plattenanordnung gelte im Folgenden ein Wert von 100pF.

- b) Der Kondensator sei auf die Spannung $U_q = 50$ V geladen. Der Schalter S_1 wird geöffnet und danach S_2 geschlossen. Nach welcher Zeit Δt ist die Spannung u_C am Kondensator auf 5V abgefallen?
- c) Wenn der Kondensator vollständig entladen ist, wird auch der Schalter S_1 wieder geschlossen (S_2 bleibt geschlossen).

Berechnen Sie den zeitlichen Verlauf der Spannung am Kondensator $u_C(t)$ mit Zahlenwerten.


Der Kondensator sei nun wieder auf eine Spannung von 50V geladen, und d_1 werde so eingestellt, dass die Gesamtkapazität des Kondensators 100pF beträgt.

- d) Berechnen Sie die Ladung Q auf den Platten und die elektrischen Feldstärken E_1 im Luftspalt sowie E_2 im Dielektrikum.
- e) Berechnen Sie die minimale Luftspaltdicke d_1 , für welche die Durchschlagfeldstärke in Luft $E_D = 3.8 \text{MV/m}$ erreicht wird.

Brm / Chm / Hoa / Unh Seite 4 von 5

Aufgabe 4 (ca. 12 Punkte)

Folgende Anordnung besteht aus einem Joch aus Material 1 mit B-H-Kennlinie It. Diagramm in direktem Kontakt mit einem Anker aus Material 2 mit einer konstanten relativen Permeabilität von 500. Auf das Joch ist eine Spule mit 200 Windungen aufgebracht. Der Querschnitt ist im gesamten Magnetkreis gleich. Remanenz, Streuung und Inhomogenitäten können vernachlässigt werden.

- a) Geben Sie ein aussagekräftiges elektrisches Ersatzschaltbild der Anordnung inklusive Zählpfeilrichtungen an.
- b) Berechnen Sie den notwendigen Strom in der Spule, damit sich im Material 2 eine Flussdichte von 0,9T einstellt. Wie groß ist die relative Permeabilität von Material 1 im Arbeitspunkt?
- c) Nun besteht oben und unten ein Luftspalt von 0,1mm zwischen den beiden Eisenteilen. Wie groß ist die magnetische Flussdichte in Material 2, wenn der Strom durch die Spule 0,5A beträgt? Ist die relative Permeabilität von Material 1 in diesem Fall anders als unter b)? Begründen Sie!

Brm / Chm / Hoa / Unh Seite 5 von 5