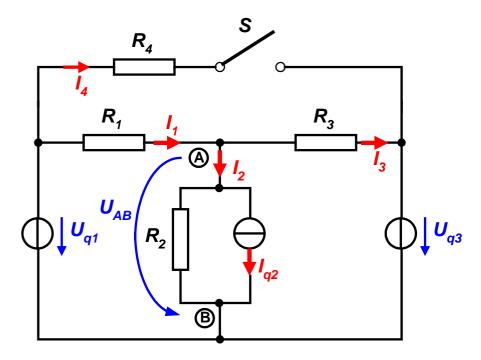


Prüfung Grundlagen der Elektrotechnik 1

Studiengänge Mechatronik / Regenerative Energien und Energieeffizienz / Regenerative Energietechnik und Energieeffizienz

Prüfung				Prüfur	Prüfungsteilnehmer				
Semester:		SoSe 2018		Name:	Name:				
Prüfungstermin:		09.07.2018		Vorna	Vorname:				
Arbeitszeit:		120min		Matrik	Matrikelnummer:				
Aufgabensteller:		Prof. Bruckmann, Prof. Chamonine, Prof. Horn, Prof. Unold		Studie	Studiengang:		0	O REE	
Raum:		Platz Nr.		Studie	ngruppe:	Оа	O b	O w	
Bemerkung				el Erfolg!					
Bewertung	Gesa	Gesamtpunkte:			Note:				
Erstprüfer:			Datur	n:	Unters	schrift:			
Zweitprüfer:		Datur	Datum:		Unterschrift:				

Zugelassene Hilfsmittel:


- selbstgeschriebene Formelsammlung
- Fakultätstaschenrechner Casio FX-991

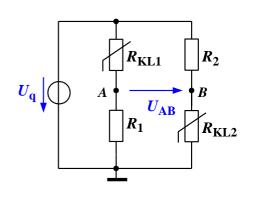
Allgemeine Hinweise:

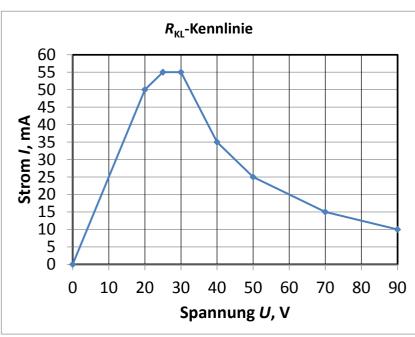
- Bitte überprüfen Sie, ob Ihre Angabe alle Blätter und Aufgaben umfasst.
- Die Angabenblätter dürfen nicht getrennt werden und sind als Bestandteil der Prüfung mit abzugeben.
- Rechenwege sind vollständig und nachvollziehbar zu dokumentieren.
- Kennzeichnen Sie eindeutig, zu welcher Teilaufgabe eine Lösung gehört.
- Falls Rechnungen auf einer anderen Seite fortgesetzt werden, ist dies deutlich zu kennzeichnen.
- Benutzen Sie keinen Rot-, Orange- oder Bleistift.
- Alle Punkteangaben sind Richtwerte.

Aufgabe 1 (ca. 14 Punkte)

Gegeben ist das folgende Netzwerk mit den Bauelementwerten: $U_{q1} = 80V$, $I_{q2} = 100$ mA, $U_{q3} = 40V$, $R_1 = 100\Omega$, $R_2 = 200\Omega$, $R_3 = 400\Omega$, $R_4 = 800\Omega$.

Hinweis: Zuerst ist der Schalter S offen.


- a) Wandeln Sie die lineare Stromquelle, bestehend aus I_{q2} und R_2 , in eine lineare Spannungsquelle um.
 - Berechnen Sie die Ströme I_1 , I_3 und I_2 mit dem Maschenstromverfahren. Ermitteln Sie das dazu gehörige Gleichungssystem in Matrix-Vektor-Notation und geben Sie dann die Werte für I_1 , I_3 und I_2 an.
- b) Welche Leistungen werden in den idealen Quellen des ursprünglichen Netzwerks jeweils umgesetzt? Welche Quellen wirken als Erzeuger, welche als Verbraucher? Begründen Sie.
- c) Welchen Wert muss die Spannung der umgewandelten Quelle annehmen, damit *I*₂ zu 0A wird?


Nun ist der Schalter S geschlossen.

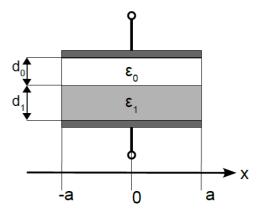
d) Ermitteln Sie den Strom in **R**₄. Welche Leistungen werden in den Quellen des ursprünglichen Netzwerks nun umgesetzt?

Aufgabe 2 (ca. 10 Punkte)

Zwei gleich große Widerstände $\mathbf{R}_1 = \mathbf{R}_2$ sind mit zwei gleichen Kaltleiterwiderständen \mathbf{R}_{KL1} und \mathbf{R}_{KL2} zu einer Brücke geschaltet. Die nichtlineare Kennlinie eines Kaltleiterwiderstandes ist im Diagramm angegeben. Sie besteht aus stückweise linearen Abschnitten.

<u>Hinweise:</u> Beachten Sie, dass zwischen *A* und *B* kein Strom fließen kann. Die beiden Parallelzweige können deshalb getrennt behandelt werden. Aufgabenteile b) und c) sind unabhängig von a) lösbar.

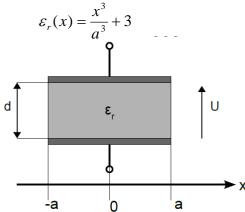
a) Die Brücke soll für $U_q = 40$ V abgeglichen sein (d.h. $U_{AB} = 0$ V). Wie groß müssen dazu die Widerstände R_1 und R_2 sein?


Nun sind gegeben: $\mathbf{R}_1 = \mathbf{R}_2 = 500\Omega$.

- b) Wie groß wird U_{AB} , wenn die Quellenspannung auf $U_q = 70$ V erhöht wird? Wie groß sind die Kaltleiterwiderstände R_{KL1} und R_{KL2} in diesem Fall? Wie groß sind die entsprechenden differenziellen Widerstände r_{KL1} und r_{KL2} ?
- c) Für welche Leistung müssen die Kaltleiterwiderstände im Fall b) ausgelegt werden? Welche Leistung muss die Quelle liefern?

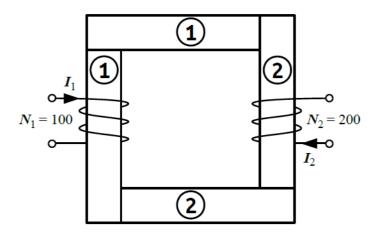
Aufgabe 3 (ca. 11 Punkte)

Gegeben ist die unten skizzierte Anordnung. Es existiert ein Luftspalt d_{θ} zwischen dem Dielektrikum und der oberen Platte gemäß der Abbildung.


Die Teilkapazität des Bereiches mit dem Dielektrikum ε_1 werde mit C_I bezeichnet, die Teilkapazität des luftgefüllten Bereiches werde mit C_0 bezeichnet. Die Platten sind quadratisch mit den Abmessungen $2a \cdot 2a$.

Hinweis: Die Teilaufgaben c) und d) können von a), b) unabhängig gelöst werden.

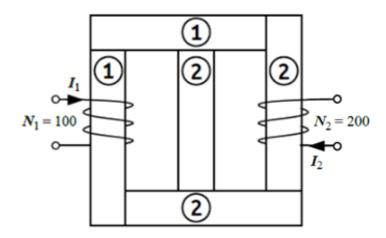
- a) Geben Sie ein Ersatzschaltbild mit konzentrierten Elementen an, berechnen Sie die Gesamtkapazität der Anordnung als Funktion von ε_0 , ε_1 , a, d_0 , d_1 und vereinfachen Sie den erhaltenen Ausdruck soweit möglich (ohne Doppelbrüche).
- b) Geben Sie einen Ausdruck für die Luftspaltlänge d_0 in Abhängigkeit von ε_0 , ε_1 , a, d_1 an, so dass die elektrische Energie im Medium mit ε_I doppelt so groß ist, wie die elektrische Energie im Luftspalt.


Gegeben ist nun ein Plattenkondensator mit einem inhomogenen Dielektrikum, an dem eine Spannung U > 0 anliegt. Die relative Permittivität ε_r ist nun für -a < x < a ortsabhängig gemäß:

- c) Berechnen Sie die elektrische Feldstärke E(x) und die elektrische Flussdichte D(x) im Dielektrikum und skizzieren Sie die Oberflächenladungsdichte $\sigma(x)$ auf der oberen Platte für -a < x < a mit Angabe der Minimal- und Maximalwerte.
- d) Berechnen Sie die Kapazität C des Kondensators.

Aufgabe 4 (ca. 13 Punkte)

Gegeben ist ein Eisenkreis bestehend aus vier geraden Teilen laut Zeichnung. Die Teile sind jeweils 10cm lang und haben einen quadratischen Querschnitt von 400mm². Material ① besitzt eine konstante relative Permeabilität von 530, für Material ② ist die B-H-Kennlinie gegeben. Magnetische Streufelder und Luftspalte können vernachlässigt werden.



a) Geben Sie ein vollständiges elektrisches Ersatzschaltbild der Anordnung an und zeichnen Sie die mittlere Feldlinie in die Anordnung ein.

- b) Beurteilen Sie jede der folgenden Aussagen mit "wahr" oder "falsch". Jede der möglichen Antworten kann unabhängig von den anderen Aussagen wahr oder falsch sein!
 - <u>Bewertung:</u> Für jedes richtige Kreuz gibt es 0,5 Punkte, für jede falsche Antwort 0,5 Punkte Abzug! Nicht beantwortete Fragen werden nicht gewertet, die minimale Punktzahl ist 0 Punkte.

wahr falsch

- O An allen Teilen fällt in jedem Arbeitspunkt dieselbe magnetische Spannung ab.
- O Für positives I_1 muss I_2 negativ gewählt werden, damit sich die Flüsse der zwei Wicklungen addieren.
- O Wenn die Reihenfolge der Eisenteile geändert wird, ändert sich nichts am Gesamtfluss.
- O I_1 betrage 0A, I_2 ist ungleich 0. Unabhängig vom Vorzeichen von I_2 ziehen sich alle Teile in dieser Anordnung gegenseitig magnetisch an.
- c) Bestimmen Sie den magnetischen Fluss in der Anordnung, wenn $I_1 = 6$ A und $I_2 = 1,2$ A beträgt. Wie groß sind die magnetischen Spannungsabfälle an allen vier Teilen? Bestimmen Sie die relative Permeabilität von Material ② im Arbeitspunkt.
- d) Bestimmen Sie Betrag und Vorzeichen der Stromstärke in Spule 2, damit die Flussdichte in der Anordnung insgesamt 1,0T beträgt.
- e) I_1 betrage nun 0A, I_2 ist ungleich 0. Verändert sich der magnetische Fluss in Spule 1, wenn ein fünftes Eisenstück aus Material ② lt. Skizze in der Mitte der Anordnung eingefügt wird (Luftspalte sind zu vernachlässigen)? Wenn ja: wie? Begründen Sie!

